
Lecture 10 - February 6

Arrays and Linked Lists

SLL: List Constructions
SLL: getSize and getTail
Trading Space for Time: tail and size
SLL: addFirst



Announcements/Reminders

• Assignment 2 (on SLL) released
+ Required studies: Generics in Java (Slides 33 — 36)
+ Recommended studies: extra SLL problems

• Assignment 1 solution released
• splitArrayHarder: an extended version released
• Lecture notes template available
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Contact Information of TAs on common eClass site



Exercise: Mixing the “Best” from both Sorts?
Recall:
• In insertion sort, costs of insertions are increasing.
• In selection sort, costs of selections are decreasing.
Idea:
• Perform insertion sort until half of the input is sorted.
• Perform selection sort to finish sorting the remaining half.
Q: Will this “new” algorithm perform better than O(n²)?
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SLL: Constructing a Chain of Nodes

Approach 1

Alan-Mark- Tom

mark Aliasing
tom N tar 1- tom

17 X X 2. mark
, next-

3 . alan , next. next

Node "Alan"
e. T

~ ~ ~
alan n. mark .

next
= tool

T &
~
T

unknowaiableNation
Node Mark"

T ~ C
.

-

conterrordark -> R.

Node alon = new Node ("Alan's mark) ; Node "TomNode mark = new Node ("Mark" tom) :
tom
- & X

Node tom = new Node < "Tom"snull); llU .



SLL: Constructing a Chain of Nodes

Approach 2
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Approach 1

SLL: Setting a List’s Head to a Chain of Nodes
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Approach 2

SLL: Setting a List’s Head to a Chain of Nodes
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Trace: list.getSize()
current  current != null  End of Iteration size

SLL Operation: Counting the Number of Nodes
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Trace: list.getTail()
current  current != null  End of Iteration tail

SLL Operation: Finding the Tail of the List
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SLL: Trading Space for Time wastemorespacemake subsequententationaper
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SLL Operation: Inserting to the Front of the List
Q. Does tail or size need to be updated?
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