
Lecture 10 - February 6

Arrays and Linked Lists

SLL: List Constructions
SLL: getSize and getTail
Trading Space for Time: tail and size
SLL: addFirst

Announcements/Reminders

• Assignment 2 (on SLL) released
+ Required studies: Generics in Java (Slides 33 — 36)
+ Recommended studies: extra SLL problems

• Assignment 1 solution released
• splitArrayHarder: an extended version released
• Lecture notes template available
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Contact Information of TAs on common eClass site

Exercise: Mixing the “Best” from both Sorts?
Recall:
• In insertion sort, costs of insertions are increasing.
• In selection sort, costs of selections are decreasing.
Idea:
• Perform insertion sort until half of the input is sorted.
• Perform selection sort to finish sorting the remaining half.
Q: Will this “new” algorithm perform better than O(n²)?

* Precondition : VI.J . 0 = [<EX**J < REAputE] < put[J]Not working-y
- -2 <2%7: 3 , 4,0

input
T & input[] - InputEj] insertions

-
<
:
7
, 73 3 , 4

,
07

↓selections X
[+ 2 , 7, 0, 334]

WorkingTa b
N

(1 + u(z)4 = O(n2)

: rou0(1 + 2 +...+xz) = O(u3)I with insertionne L 1st insertiogn/2 +1)./2)/2
: "Sections O(1 + (2 - 1) + ... + 1) = 0(3)
R

SLL: Constructing a Chain of Nodes

Approach 1

Alan-Mark- Tom

mark Aliasing
tom N tar 1- tom

17 X X 2. mark
, next-

3 . alan , next. next

Node "Alan"
e. T

~ ~ ~
alan n. mark .

next
= tool

T &
~
T

unknowaiableNation
Node Mark"

T ~ C
.

-

conterrordark -> R.

Node alon = new Node ("Alan's mark) ; Node "TomNode mark = new Node ("Mark" tom) :
tom
- & X

Node tom = new Node < "Tom"snull); llU .

SLL: Constructing a Chain of Nodes

Approach 2

> mark an Mark

-

alan-leta
-

-
mark

.-La
i

-& &
T -

tom->ETo

Approach 1

SLL: Setting a List’s Head to a Chain of Nodes
SLL

W

0 O
list- ->

heada will

dan tom

↓ ~
Smark

-

Node "Alan Node "Mark" Node "Tom"
7 11C. C. C.

N N N null

list. head == alan
defaultconst D

.&X T
-

Approach 2

SLL: Setting a List’s Head to a Chain of Nodes
-

t
Node "Alan Node "Mark" Node "Tom"
C. 7 C. -e .

N N N null

-

-

Empty SL SLL list) = new S(L)) ;

SLL list] = nulls
SL(

list
-

head ->
null

empty.

non-existing
list?

-> null

Trace: list.getSize()
current current != null End of Iteration size

SLL Operation: Counting the Number of Nodes

ECurrent Laurentcurrentcurrent
null

7

- a SLL method. O(n) # iterations
=# nodes in

- I
- Popcounteretall chair

---x klan alar !=null current == make I-> -> >
-> -- mark mark? null current == tom 2

tom tom !:Will current : well 3

n may bproved.
nulltnull

F

Trace: list.getTail()
current current != null End of Iteration tail

SLL Operation: Finding the Tail of the List
1st it.

current 2nd it. God it.
**·

F

S

Full

tail*s
null

x
+

iterations = Size of list O(n)

SLL: Trading Space for Time wastemorespacemake subsequententationaper

Se s~Patch
: For methods that

mightimpactheadthi,
SLL class SLL list = new S(L(>; the bodies

of these methods
attributes ↳ head attribute list. tail

O(1) must update
↓ cost ↳ tail access list

.
Size

more
f space ↳ size ↓ them property.

less costuningme

SLL Operation: Inserting to the Front of the List
Q. Does tail or size need to be updated?

7
v &&-> ②
-D

v XX

①
D
&

&

SLL ⑪3 X Node . Harllist --> size ** well-head ⑪ X> ↓
tail#uX Node "Tom"

-

- ? D
-null

